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Language—similarly to other aspects of culture—is an evolution-
ary system in its own right, constantly shaped by adaptive pres-
sures and neutral processes1,2. There are currently about 7,000 

spoken languages3, an essential aspect of this diversity being repre-
sented by their speech sounds (phonetics and phonology). There is 
wide cross-linguistic variation at this level4, and a crucial question 
concerns the factors and processes driving the emergence and main-
tenance of this diversity5. Most sound changes are due to language-
internal factors, such as co-articulation and misperception6, but 
recent studies suggest that external factors might also generate pres-
sures to which sound systems adapt5. As such, it has been suggested 
that aspects of the physical environment that vary spatially (e.g., 
altitude or air humidity) affect the physiology of speech production 
differently in different populations, resulting in differences between 
the speech sounds that occur in different languages5,7,8.

However, our own cognitive, physiological and anatomical 
biases are probably the most important components shaping lan-
guages. Biases that are shared by all humans result in linguistic uni-
versals and universal tendencies6,9. However, in previous work we 
have argued that the extensive inter-individual variation that exists 
at all levels—from the molecular to the anatomical, physiological 
and neuro-cognitive—also plays a role in the emergence of cross-
linguistic variation5,10.

There is widespread variation at all levels between individuals 
and groups, including in genetics, anatomy and physiology, aris-
ing from our complex evolutionary history11–15. Here, we focus on 
variation in the morphology of the vocal tract (VT; see Fig. 1), 
which, despite the rather sparse evidence5,16–19 is no exception20–23. 
Using high-quality data from a large multi-ethnic sample, we show 
that the oral part of the VT has overlapping but statistically dis-
tinguishable patterns of variation between participants from four 
broad ethno-linguistic groups. As we argue in detail elsewhere16,17, 
variation in VT anatomy can produce articulatory biases that sur-
vive compensatory mechanisms, and that result in subtle acoustic 
or coarticulatory effects19,24. These weak effects can be amplified 
by the repeated use and transmission of language, influencing the 

processes of sound change and ultimately affecting the patterns of 
linguistic diversity5,16. However, this is an extremely complex, long 
and heterogeneous causal path with feedback loops, which must be 
investigated using methodologies and data from several scientific 
disciplines10,16,25. We have previously shown, using biomechani-
cal modelling, that click production is affected by the shape of the 
alveolar ridge17, and that the covert articulatory strategies used by 
non-native participants to produce the North American English ‘r’ 
sound is influenced by the shape of their hard palate16.

We test here the hypothesis that the usually weak effects of such 
‘idiosyncratic’ variation may be amplified through the repeated use 
and learning of language in groups where these variants are fre-
quent enough, resulting in differences between the languages of 
groups with different biases5. While the cultural amplification of 
weak biases is supported by abstract modelling26,27 and experiments 
involving universal properties of human cognition28,29, we use here 
a more realistic model, where a detailed geometric simulation of 
the vocal tract built from actual human data is used to learn and 
produce vowels widely attested cross-linguistically. In this model we 
can precisely control the VT anatomy and observe (and propagate) 
its effects on the production of actual speech sounds. We concen-
trate here on one component of the oral VT, the hard palate (HP, 
which is under genetic and environmental controls, and shows 
inter-individual and inter-group variation5,19,22,23), and in particular, 
on the midsagittal hard palate shape (MSHPS; Fig. 1).

We use a model of MSHPS we developed previously19 that allows 
us to accurately describe the midsagittal shape of any human hard 
palate (and to generate novel ones) using only four meaningful 
parameters (angle, fronting, concavity and weight) controlling a 
customized Bézier curve. With this model, we imported MSHPSs 
from 107 normal human participants into a simulation that learns to 
articulate, to a very high accuracy, a set of five ‘seed’ vowels (simul-
taneously cross-linguistically widespread and extreme in their cov-
erage of the human vowel space; Fig. 2). It does so by discovering 
the affordances and constraints of its articulators (such as tongue, 
jaw and lips) and the nonlinear mapping between configurations of 
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articulators and the produced sounds. This allowed us to precisely 
quantify the effects of observed variation in human MSHPS on how 
well vowels are learned, while keeping everything else constant. We 
focused on vowels because of the continuous (but cross-linguisti-
cally structured) nature of the human vowel space, the possibility 
to represent them by a small number of formants, and their rela-
tively simple articulation. Variation in MSHPS produces biases that 
affect the articulation of vowels in subtle ways, resulting in weak 
but systematic inter-individual differences in the acoustics of the 
produced vowels. These effects are small within a generation (com-
pared to the observed within-dialect and within-language variation 
in the realizations of these vowels). However, using the Iterated 
Learning Model paradigm30 (where agents successively learn from 
the previous generation in a linear transmission chain), we show 
that these effects are amplified through cultural transmission. This 
results in differences between chains that are composed of agents 
with identical MSHPS within the chains, but different across them. 
Thus, the clustering of similar MSHPSs within groups, but different  
between groups, may lead to cross-linguistic differences between 
vowel systems.

Results
We present here the three main components of the results (see 
Methods and Supplementary Results 1 and 2 for methodological 
details and full results). First, we show that dense multidimensional 
measurements of oral VT anatomy do vary between broad ethno-
linguistic groups, strongly supporting the fundamental assumption 
motivating these simulations. Second, we analyse a large cross-lin-
guistic database of actual vowel productions, providing the proper 
background against which the results of our simulations should 
be understood. Finally, we focus on the simulations themselves, 
describing the quantification of the MSHPS using four-parameter 
Bézier curves. We show that our results are consistent between  

multiple independent runs for a select subsample of MSHPSs; we 
analyse the effects of MSHPS on the vowels produced at the end 
of the transmission chains and the amplification of the weak biases 
due to MSHPS by the repeated transmission along these chains; and 
we report on how the free articulators are used to partially compen-
sate for variation in MSHPS.

We represent vowels by their first formants, and, while usually 
the first two (denoted F1 and F2) are used (given their importance 
for vowel perception), we also include the higher formants F3, F4 
and even F5, as fine details of the hard palate shape are more likely 
to affect higher resonances (associated with smaller wavelengths).

Oral VT morphology varies across groups. We analysed data on 
the anatomy of the anterior part of VT from more than 100 par-
ticipants from four broad ethno-linguistic groups (‘European’ 
and ‘North American of European descent’, ‘North Indian’, ‘South 
Indian’ and ‘Chinese’; these include the participants whose MSHPS 

Fig. 1 | the shape of the human hard palate (the bony roof of the mouth). 
Top left: midsagittal MRI scan (yellow scale bar, 1 cm). The other three 
panels are projections of the three-dimensional (3D) intra-oral optical 
scan (red scale bar, 1 cm). Top right: transverse/inferior view (incisors to 
the right); bottom left: midsagittal/left view (incisors to the right); bottom 
right: coronal/posterior view (incisors away from viewer). Images not to 
scale (see the scale bars); the images are derived from the structural MRI 
and 3D optical intra-oral scans of author D.D., a 41-year-old male (n = 1 
participant). The top-left panel was created using Horos 2.4.0 (https://
horosproject.org); the other three panels were created using MeshLab 
2016.12 (http://www.meshlab.net), and the whole image assembled using 
GIMP 2.8.22 (https://www.gimp.org) on macOS 10.13 High Sierra.
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Fig. 2 | the distribution across languages and dialects of the five vowels 
used in the current study, highlighting the particular realizations used as 
‘seeds’ for our models. The vowels are represented in the space of the first 
two formants F1 × F2, where, as is customary for this type of plot: both axes 
are reversed, they show only the actual range of values excluding 0, and 
F1 is represented on the y axis. The large black symbols (with associated 
white-on-black International Phonetic Alphabet (IPA) notations) are the 
canonical productions of the vowels we used as ‘seeds’ in our simulations 
(n = 5 seed vowels): the mid central [ə] (as in American English ‘uh’ or 
‘sofa’, with the values of the first five formants F1– F5 in Barks (5.13, 9.5, 
14.56, 16.08, 18.04)); the high front [i] (as in ‘beet’ (2.29, 14.05, 15.63, 
16.52, 17.88)); the low front [æ] (‘bat’ (6.69, 12.02, 14.69, 16.32, 18.9)); 
the high back rounded [u] (‘boot’ (2.72, 5.07, 15.14, 15.79, 16.96)); and the 
low back [ɑ] (‘hot’ (6.59, 8.34, 15.11, 15.91, 18.03)). The coloured symbols 
are actual realizations of these vowels recorded from several languages 
and dialects31 (n = 1,051 vowel realizations across 202 languages and 309 
dialects); we also show their convex hulls (as transparent polygons) and 
means (large white symbols with associated black-on-white IPA notations). 
Our canonical vowels are more extreme than their cross-linguistic average 
realization (to which they are connected by black segments for easier 
visualization) and more extreme than even the most extreme actual 
realizations, as we want to start from extreme positions to maximally cover 
the potential human vowel space (especially for [i] and [u]). Moreover, 
actual productions during speech are influenced by multiple factors related 
to coarticulation, discourse and speed.
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were used in the simulations). We found (see Supplementary Fig. 1,  
Supplementary Results 1 Part III and Supplementary Results 2) 
that the canonical variate analysis (CVA; a technique widely used 
for the analysis of multivariate data that computes linear combina-
tions of the original variables that are not necessarily orthogonal but 
that maximize the ratio of between- and within-group variances) 
of 57 classical anthropological measurements has an overall clas-
sification accuracy of 84% for group and 94% for sex—whereas for 
the actual 3D intra-oral scans (IOS) of the lower jaw, CVA reaches 
75% for group and 80% for sex, and for the upper jaw, 64% for 
group and 85% for sex. The Procrustes ANOVA with permutation 
(Supplementary Results 2, section 3.3.4.2) of the same IOS data for 
the lower jaw found that both main effects and their interaction 
are significant (Procrustes ANOVA with 1,000 permutations; for 
group: F(3,86) = 1.35, 95% permutations confidence interval (95% 
pCI: the interval containing 95% of the F values obtained when per-
muting the data, that is, if the null hypothesis were true) is (0.79, 
1.28), P = 0.007, Z = 2.52; sex: F(1,86) = 1.40, 95% pCI (0.69, 1.48), 
P = 0.048, Z = 1.82; group × sex interaction: F(3,86) = 1.28, 95% 
pCI (0.77, 1.30), P = 0.030, Z = 1.96), while for the upper jaw, only 
the main effects are significant (Procrustes ANOVA with 1,000 per-
mutations; for group: F(3,86) = 1.46, 95% pCI (0.77, 1.30), P = 0.005, 
Z = 2.92; sex: F(1,86) = 1.53, 95% pCI (0.68, 1.53), P = 0.028, 
Z = 2.09; group × sex interaction: F(3,86) = 0.85, 95% pCI (0.76, 
1.32), P = 0.84, Z = −1.06). Thus, the anatomy of the anterior part 
of VT shows differences between groups and sexes, but these dif-
ferences are not sharp, are found only in highly multidimensional 
datasets, there are important overlaps between groups, and there are 
many ‘mis-classified’ individuals.

Real-world variation in the acoustics of the five vowels. We ana-
lysed a large database of vowel realizations (including [ə], [ɑ], [æ], 
[i] and [u]), containing mostly the first three formants F1–F3, across 
several languages and dialects31 (Fig. 2 and Supplementary Results 
1 Part I). We found that, as expected, there is important variation 
between the realizations of the ‘same’ vowel across languages (stan-
dard deviations (SD) between 0.33 and 1.01 with average 0.60 across 
all vowels and formants; all in Bark), but also within languages 
(average SD of 0.37, range 0.0–1.52) and dialects (average SD of 
0.31, range 0.0–1.51). This variation is an important baseline against 
which to understand the results of our simulations.

Hard palate shape quantification for simulations. For our simula-
tions, we modelled MSHPS using a Bézier curve with four mean-
ingful parameters: angle, fronting, concavity and weight; more 
precisely, given a MSHPS tracing, we find the values of these param-
eters that produce a Bézier curve that best fits the MSHPS (detailed 
in ref. 19). We conducted principal component analysis (PCA) on 
these four parameters across all 107 MSHPSs in our sample, and we 
found that the first two PCs (denoted as shape PCs and shortened to 
‘sPCs’) explain 73.3% of the variance. Shape PC1 (44.9%) represents 
weight and fronting (contrasting higher, angled palates to shallower, 
smoother ones), and shape PC2 (28.4%) represents concavity and 
angle (contrasting flatter to more rounded shapes) (Supplementary 
Fig. 2). Using the methods described above, we found that these 
Bézier parameters do not capture the group and sex differences in 
our sample, which is probably due to their very low dimensionality, 
requiring much larger samples.

Consistency and variation across replications. Given that ran-
domness plays a major role in many aspects of our simulations 
(especially in the learning mechanism), we checked the consistency 
of our results by re-running the whole transmission chain process 
70 times for five selected MSHPSs: two artificial extremes created by 
manually setting the Bézier curve parameters to produce extremely 
low and extremely high (but still plausible) shapes, two actual 

MSHPSs from the ArtiVarK participants A87 and A73 (selected 
for their representativeness of the variation in that sample), and the 
average MSHPS across the participants in ref. 22 (Supplementary  
Fig. 3). This procedure ensures that we sample the possible evo-
lutionary trajectories of the transmission chain for each of these 
five hard palate shapes. Reassuringly, we found that, in the final 
generation, the first five formants (F1–F5) of the tested vowels [ə], 
[ɑ], [æ], [i] and [u] have very narrow distributions across replica-
tions, with standard deviations between 0.02 and 0.43 (mean 0.10, 
median 0.05) Bark, and coefficients of variation between 0.001 
and 0.08 (mean 0.01, median 0.004). Compared to the real-world 
within-dialect distances (Supplementary Results 1, section 2.2.1.4), 
the inter-replication differences for the actual MSHPSs (A87, aver-
age and A73) were significantly smaller (Tukey’s post-hoc Honest 
Significant Difference tests across vowels and formants: P < 0.001 
for all three MSHPSs; see Supplementary Table 1), while for the two 
artificial extremes (low and high) were of a similar order of magni-
tude (see Fig. 3, Supplementary Fig. 4 and Supplementary Results 1, 
section 2.2.1). Moreover, the multidimensional scaling (MDS) and 
hierarchical clustering of the dynamic time warp distances (DWT) 
between all pairs of trajectories (that is, the time series of formant 
values over the generations of a chain) across MSHPSs, vowels and 
replications (Supplementary Results 1, section 2.2) found no sys-
tematic effects of replication. Therefore, we will focus here on the 
full dataset of 107 MSHPSs with a single replication each.

The effects of hard palate shape on the vowels in the final genera-
tion. The shape PCs affect the vowels in the final generation (Fig. 4  
and Supplementary Fig. 5; see Table 1 for the linear regressions of 
individual formants on the shape PCs and their interactions for 
each vowel and formant): this influence is significant for [æ], [ɑ] 
and [i] for the first two formants, but covers all five vowels for the 
higher formants. The ethno-linguistic group, but not the sex, of the 
participant from which the MSHPS used in the model came makes a 
significant contribution to the final generation’s acoustics, excluding 
F1 and F2 (see Supplementary Results 1, section 2.3.9). The F-tests 
comparing the regression models with and without group as predic-
tor, separately for each formant, are as follows: F1: F(40,525) = 1.15, 
P = 0.246; F2: F(40,525) = 1.34, P = 0.084; F3: F(40,525) = 2.16, 
P < 0.001; F4: F(40,525) = 3.77, P < 0.001; F5: F(40,525) = 2.93, 
P < 0.001. Likewise, considering the vowel system as a whole, group 
significantly affects the Procrustes distance to the ‘seed’ vowel sys-
tem: F(8,533) = 6.15, P < 0.001. These effects are vowel-specific and 
concern especially [i] and [u].

The effects of hard palate shape are amplified across generations.  
The repeated transmission of language across generations results 
in the statistically significant increasing (but decelerating) diver-
gence (measured by Procrustes distances; see Supplementary  
Fig. 6) of the five-vowel system as a whole from the original ‘seed’ 
system. These distances are very small (on the order of 0.14–0.24 
interquartile range) when compared to a set of Procrustes dis-
tances between randomly generated five-vowel systems (rang-
ing between 1.7 and 2.6), and their quadratic regression finds 
significant slopes β for both generation (linear regression slope 
β = 0.0065, 95% CI (0.0059, 0.0071), P < 0.001) and generation2 
(β = −0.000078, 95% CI (−0.000089, −0.000067), P < 0.001), with 
an adjusted R2 of 22% (Supplementary Results 1, section 2.3.6). 
Overall, the vowels become slightly more similar to each other, 
especially [u] (migrating towards [ə], [ɑ] and [æ] by almost 1.0 
Bark) and less so for [i], while [ə], [ɑ] and [æ] are relatively stable; 
this quadratic trend is statistically significant but decelerating 
(Supplementary Fig. 7).

For a given vowel, formant and generation (denoted ‘k’), we 
define driftk as the formant value of the vowel produced at the end 
of generation k minus the seed formant value (Fig. 5 shows the 
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evolution of drift across generations). With this notation, the bias  
amplification due to repeated transmission is captured well by the 
slope of the linear regression of the drift after the whole chain was 
run (drift50) on the drift after the first generation (drift1). This is 
especially strong for [æ] and [i] (Supplementary Table 4), but 
applies generally: the linear regression across vowels, formants and 
MSHPSs has R2 = 15.8%, each generation amplifying the initial dif-
ference by the linear regression slope β = 1.33, 95% CI (1.21, 1.44), 
P < 0.001. Compared with the real-world vowel data for the first 
three formants, the within-dialect variation for the same vowel is 
significantly (as judged by the Bonferroni-corrected independent 
samples t-tests reported in Supplementary Table 4) larger than 
drift1, but of comparable magnitude to drift50 (which is, never-
theless, generally smaller than the within-language variation; see 

Supplementary Table 4). Moreover, drift50 is significantly smaller 
than the inter-replication differences across vowels, formants and 
MSHSPs, and is positively correlated with drift1 (mixed-effects 
models for the five replicated MSHPSs with drift1, vowel, formant 
and their interactions as fixed effects and MSHPSs as a random 
effect with varying slopes for drift1 gives a positive and significant 
fixed effect slope βdrift1 = 1.3, 95% CI (0.61, 2.00), P = 0.007, and large 
inter-MSHPSs variation in slope with sd = 0.65; see Supplementary 
Results 1, section 2.2.1.5). Across MSHPSs, the final-generation 
vowels (except [ə]) are significantly less extreme than their seeds 
and closer to the actually observed real-world realizations, espe-
cially for [i] and [u] (compare Fig. 2, Fig. 3 and Supplementary  
Fig. 5; see Supplementary Table 4 for the Bonferroni-corrected inde-
pendent samples t-tests comparing the ‘seed’, final and real-world 
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vowel realizations, and Supplementary Results 1, section 2.3.10 for 
more information and a different visual representation).

Articulatory compensation for hard palate shape. A PCA on the 
11 articulatory parameters (of relevance here are jaw angle (JA), 
hyoid position (HX and HY), and positions of the tongue body, blade 
and tip (TCX, TCY, TBX, TBY, TTX and TTY); see Supplementary 
Methods and Supplementary Fig. 9 for details) across vowels and 
MSHPSs found that the first two PCs (denoted as articulatory PCs 
and shortened to ‘aPCs’) explain 50.6% of the variation and repre-
sent roughly the position and degree of tongue constriction: tongue 
height by aPC1 (28.1% of variation, with TCY, HX and TBY load-
ing positively) and tongue fronting by aPC2 (22.6%, with TCX, 
TBX, HY loading positively, and JA negatively). These two articula-
tory PCs correlate strongly with acoustics, especially PC1 with F1 
(Pearson’s r(26748) = −0.905, 95% CI (−0.907, −0.903), P < 0.001) 
and PC2 with F2 (Pearson’s r(26748) = 0.857, 95% CI (0.854, 0.860), 
P < 0.001), and change across generations in concordance with the 
changes in acoustics (Supplementary Fig. 8). However, the articula-
tors also respond to variation in HP shape: their regression on the 
shape PCs (sPC1 and sPC2) while controlling for the acoustics in 
the final generation (Table 2) shows that it is mainly the tongue 
position being adjusted in response to HP shape.

Discussion
Using realistic computer models of the human vocal tract, we 
investigated if different midsagittal hard palate shapes (MSHPSs) 
resulted in different patterns of ‘errors’ in the production of these 
five vowels, and found that they did, but also that the effects were 
very small. Therefore, we investigated if the repeated transmission 
of vowels across generations (that is, their learning anew by naive 
agents using the productions of the previous generation as targets) 
would amplify these effects. We found that this amplification is a 
robust phenomenon, that it produces changes comparable to the 
observed patterns of vowel dispersion within real dialects and lan-
guages, and that it varies by MSHPS (producing final vowels that 
differ statistically across shapes and ethno-linguistic groups)—
but also that the produced vowels ‘move away’ from the extreme 

canonical seeds we started with, towards realizations more typical 
of attested languages.

To check robustness, we ran 70 independent replications of the 
simulations for five selected MSHPSs, and found that the varia-
tion between replications is constrained around a central tendency 
(on the scale of real-world within-dialect variation), and that even 
artificially extreme MSHPSs produce effects within the range of 
the actually observed variation, but that there is a certain degree 
of contingency affecting individual replications. We represented the 
acoustics of vowels using the first five formants (thus going beyond 
the usual two or three), and we found that all vowels change across 
generations and for all MSHPSs following a decelerating trajectory, 
but that there are clear differences between the influence of MSHPS 
on different vowels and formants. Of the free articulators included 
in our vocal tract model, the most important ones were those con-
trolling the position of the tongue body, blade and tip, being actively 
used to compensate for variation in MSHPS. However, this compen-
sation is not perfect, and we found that the repeated transmission of 
the vowels across generations, far from dampening the weak influ-
ence of MSHPS, amplified it to an appreciable degree while produc-
ing overall more realistic vowels than the extreme initial exemplars 
we used to seed the transmission process.

Despite these results, our model described here has several short-
comings. First, the learning mechanism we used is neither ecologi-
cally valid nor very efficient, and while our decision is justified by 
our wish to use components that are as generic as possible to better 
isolate the sources of our results, alternatives such as intrinsic moti-
vation and curiosity-driven learning32 may be more appropriate. 
Second, our homogeneous, single-agent-per-generation chains are 
admittedly unrealistic and raise the possibility that the trans-gen-
erational amplification of weak biases we observed is probably too 
strong. However, our earlier abstract computational modelling33,34 
and theoretical16 work suggests that far from dampening (or hiding) 
weak individual biases, complex settings (where whole communi-
ties of agents that have different anatomies use and transmit vowels 
across communicative networks over time) hugely complexify the 
preconditions and dynamics of their amplification. Moreover, our 
design here is purposefully simplified as much as possible, because 

Table 1 | Linear regressions of the formant values of the final generation’s vowels on quantitative measures of hard palate shape

Formant vowel R2 sPC1 sPC2 sPC1 × sPC2

F1 [æ] 11.6% 0.003 (0.077) −0.008 (0.002) −0.002 (0.310)

F1 [i] 12.9% −0.053 (<0.001) 0.017 (0.358) 0.003 (0.860)

F2 [ɑ] 5.0% 0.000 (0.957) −0.004 (0.292) −0.007 (0.022)
F2 [i] 19.4% 0.065 (0.003) −0.065 (0.023) −0.098 (<0.001)
F3 [ə] 12.7% 0.007 (0.008) 0.009 (0.011) 0.000 (0.935)

F3 [ɑ] 61.2% 0.012 (<0.001) 0.031 (<0.001) −0.02 (<0.001)
F3 [æ] 20.2% −0.001 (0.801) 0.005 (0.284) −0.018 (<0.001)
F3 [i] 34.5% 0.085 (<0.001) 0.084 (<0.001) −0.023 (0.213)

F4 [ɑ] 16.2% −0.002 (0.374) 0.007 (0.004) −0.004 (0.043)
F4 [æ] 8.2% 0.000 (0.903) −0.011 (0.004) −0.005 (0.118)

F4 [i] 17.9% 0.058 (0.006) 0.105 (<0.001) 0.018 (0.463)

F5 [ə] 26.7% −0.004 (0.223) −0.028 (<0.001) −0.002 (0.660)

F5 [ɑ] 13.5% 0.007 (0.011) −0.010 (0.003) −0.003 (0.339)

F5 [æ] 35.0% −0.005 (0.279) −0.035 (<0.001) 0.007 (0.184)

F5 [i] 43.8% −0.023 (0.068) −0.064 (<0.001) 0.092 (<0.001)

F5 [u] 19.1% −0.022 (0.130) −0.077 (<0.001) 0.018 (0.301)

Each row contains the regression of one formant for one given vowel on the first two shape PCs (and their interaction), showing the explained variance (R2, in percent), and the βs (with uncorrected 
P values in parentheses) of the main effects (sPC1 and sPC2) and their interaction (sPC1 × sPC2). For economy reasons, the intercept α is not shown and we only include those rows (regressions) with at 
least one significant β (see Supplementary Results 1, section 2.3.2 for the full results); significant cells are in bold; the significance α-level is 0.05.
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it is a necessary first step to ascertain that amplification works at 
all, before investigating it in realistic models with inter- and intra-
group variation. Having established the necessary baseline, subse-
quent studies must test the deeper cultural evolutionary questions 
concerning intra-group variation. Third, we do not explicitly model 
phonology, co-articulation or language use in communication, 
focusing instead on individual vowels, but we do not expect such 
additions to invalidate the results reported here.

Taking our results at face value, how much of the observed lin-
guistic diversity might be explained by such anatomical biases? 
On the one hand, there is extensive variation in hard palate shape 
between individuals that speak the same dialect, while, on the other, 
very dissimilar languages are spoken by groups with ostensibly 
similar distributions of hard palate shapes. Our own empirical data 
reported here show that there is continuous, multidimensional, 
overlapping variation between groups in the anatomy of the vocal 
tract. In our view, these phenomena are two sides of the same coin: 
as these biases are very weak, their effects are (in the vast major-
ity of cases) successfully compensated and when not fully com-
pensated, they are usually seen as speaker-specific idiosyncrasies  
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Fig. 5 | the amplification of weak biases through repeated transmission across generations. Each column shows one of the five vowels and each row one 
of the five formants, and each plot shows the evolution of drift across generations. In any given panel, each thin grey path represents the drift to the seed 
vowel in generation k (driftk) in one of the n = 107 completed chains, while the thick blue curve is the LOESS smoothing across these paths. The yellow 
curve is the LOESS smoothing of the drift to the previous generation (drift1) across all chains, and the black dotted line is ‘no change’ (that is, 0 drift). Each 
generation k comprises a single agent, and all agents in a chain have the same MSHPS. For different views, including magnification of the range of formant 
frequencies where the change takes place or focusing on the relationship between drift after the first generation and that after the whole chain was run, 
see Supplementary Results 1, section 2.3.7.

Table 2 | articulators respond to hard palate shape

vowel articulator R2 sPC1 sPC2

[ə] aPC2 7.3% 0.013 (0.836) −0.195 (0.028)
[ə] TBX 6.7% −0.002 (0.983) −0.267 (0.042)
[ɑ] TTY 13.0% −0.093 (0.007) −0.119 (0.025)
[æ] TCX 39.6% −0.062 (0.001) −0.063 (0.019)
[i] aPC1 19.5% −0.085 (0.036) −0.026 (0.645)

[i] HY 17.8% 0.029 (0.042) −0.004 (0.859)

[i] TCX 28.2% 0.207 (0.002) 0.032 (0.725)

[i] TCY 77.8% −0.079 (<0.001) −0.113 (<0.001)
[i] TBY 64.5% −0.090 (<0.001) −0.141 (<0.001)

[u] TTY 10.6% 0.016 (0.826) −0.285 (0.007)

In the final generation, we regressed each articulator individually, as well as the two articulatory 
PCs (aPC1 and aPC2), on the first two shape PCs (sPC1 and sPC2), while controlling for the 
acoustics (the formant values), separately for each vowel. We show R2 (in percent) and βs 
(P values in parentheses) only for those cases where at least one β is significant at α = 0.05 (bold). 
See Supplementary Results 1, section 2.3.8.2 for full results.
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(or speech defects), easily overridden by other forces of sound 
change. Nevertheless, in the right conditions (frequency of biased 
speakers, their positions in the communicative network and  
language-internal conditions, among others), the effects of such 
biases can be amplified and their effects phonologized16.

The work presented here represents a first step in a long and 
inter-disciplinary research program5,25. After showing here (in a 
highly controlled and simplified setting) that vowels are sensitive 
to small differences in anatomy on the scale and pattern observed 
between individuals, the next steps should involve modelling of 
heterogeneous generations and experimental designs with human 
participants involving, for example, the reversible manipulation of  
hard palate shape35. The perspective advocated here argues that 
culture and biology co-evolve, and helps refocus interest from uni-
versalist and highly reductionistic explanations36 towards an evo-
lutionary view where variation is not noise, but a core feature of 
language and culture1,37.

Methods
We implemented a computer agent that has a realistic model of the human vocal 
tract, where several articulators (for example, tongue tip or lip protrusion) can 
be moved to produce configurations resulting in actual speech sounds. The 
articulators are controlled by a neural network trained using a genetic algorithm 
to match as well as possible a set of predefined vowel targets (the ‘seeds’). We can 
precisely control the MSHPS, and we investigated its impact on how accurately the 
seed vowels are learned and reproduced, within a single individual (ontogeny), and 
after the repeated transmission of language across generations (glossogeny).

Vocal tract model and hard palate shape. To model the shape of the human hard 
palate (the bony roof of the mouth; see Fig. 1), we modified the 3D geometric 
model of the vocal tract38 VocalTractLab 2.1 (VTL2), which allows 11 articulatory 
parameters (Supplementary Fig. 11 and Supplementary Methods) to be 
manipulated and, for a set of parameter values, produces the corresponding sound. 
Internally, this is done by computing the area function corresponding to the shape 
of the vocal tract created by the position of the articulators by cutting this in planar 
sections along the airway centreline and computing the area of each section38,39. 
We added the capability to specify HP shape from actual human data (for example, 
MRI or intra-oral scanning) or programmatically, while maintaining the other 
aspects of the model unchanged. The MSHPS is described by a four-parameter 
Bézier curve model that we introduced previously19 (Supplementary Methods and 
Supplementary Fig. 9), the transverse jaw curvature by a one-parameter cth-root 
curve, and the coronal profile by a one-parameter parabola, the last two being 
fixed here (Supplementary Methods and Supplementary Fig. 1040). Two MSHPSs 
were artificially generated extremes (one extremely ‘low’ and one extremely ‘high’, 
but still plausibly human) by setting the Bézier curve parameters manually. 107 
MSHPSs resulted from fitting the Bézier curve model to tracings of actual human 
MRI structural scans using the procedure described in ref. 19: 85 are participants in 
our own ArtiVarK study18,19 (identified by ‘A’; this is the subsample of participants 
with MRI scans used in ref. 19: 32 female, age range 18–61, mean 27.2, median 24, 
SD 7.6), and 22 are from published MRI scans22 (identified by ‘T’; 10 female, age 
range 18–51, mean 29.8, median 27.5, SD 9.2). Finally, one MSHPS is fitted to the 
average of the ‘T’ MRI scans, denoted as ‘average’. Supplementary Fig. 3 shows five 
selected MSHPSs (low, A87, average, A73 and high) with their midsagittal Bézier 
parameter values, and the fixed coronal and transverse profiles. The ArtiVarK 
study is covered by amendment 45659.091.14 (1 June 2015) “ArtiVarK: articulatory 
variation in speech and language” to the ethics approval “Imaging Human 
Cognition”, Donders Center for Brain, Cognition and Behaviour, Nijmegen, 
approved by CMO Regio Arnhem-Nijmegen, The Netherlands (please see  
https://doi.org/10.5281/zenodo.1480426 for details). For Fig. 1, author D.D. has 
explicitly given his approval for the use of his MRI and intra-oral scans.

Learning to best approximate a set of given vowels. A vowel is described by its 
first five formants, Fi ∈ R+, i ∈{1,2,3,4,5}, measured on the psychoacoustical Bark 
scale41. For a given target vowel (which can be a predefined ‘seed’ vowel or a vowel 
produced by a different agent), described by its first five formants Fi

t, our goal is to 
train a naïve agent to produce a vowel Fi

p that best approximates the target, in the 
sense that it minimizes the Euclidean distance between them, dtp = ((F1

t - F1
p)2 + 

 (F2
t - F2

p)2 + … + (F5
t - F5

p)2)1/2.
We implemented a feed-forward fully connected neural network with three 

layers, using the standard sigmoid activation function. The input layer has 6 
neurons: 5 take the formants Fi

t of the target sound as input (scaled so that the 
approximate range of F1– F3, about 2 to 16 Bark, maps to the unit interval: 0.71 × 
(Fi

t − 2) − 5), the 6th neuron being a bias neuron. The hidden layer has 9 neurons, 
8 receiving information from all 6 input neurons and the 9th being a bias neuron; 
all 9 are feeding information into the 11 neurons of the output layer. Each output 
neuron sets the value of one of the 11 free articulatory parameters of the VT 

model, which produces a sound with formants Fi
p. Thus, the neural network maps, 

through the synaptic weights wjk of the connections between neurons, the first five 
formants of the target vowel, Fi

t, onto the formants of the produced sound, Fi
p.

We trained the neural network using a genetic algorithm approach, where a 
‘genome’ is composed of 147 real-valued ‘genes’, each gene being one of the neural 
network’s synaptic weights wjk. The genetic algorithm minimizes the ‘fitness’ of 
the ‘genome’, defined as the Euclidean distance dtp between the target vowel and 
the sound produced by the neural network with synaptic weights wjk (or +∞ if the 
articulatory configuration is impossible or no sound would be produced). We used 
a fixed population size of 100 ‘genomes’ with stochastic universal sampling with 
elitism42,43, and we used evolution strategies44 to find a set of parameters controlling 
mutation. The genetic algorithm was run for a maximum of 500 iterations, unless 
the best fitness stabilizes across 100 successive iterations (an early stop). The 
genetic algorithm searches an enormous non-linear space defined by the 147 
synaptic weights, attempting to find the neural network that maps the given target 
vowel to a configuration of the 11 free articulatory parameters of the VT that 
produces a sound closest to the target.

Seed vowels and language change across generations. We predefined five seed 
vowels: the mid central [ə] (as in American English ‘uh’ or ‘sofa’, with the values 
of the first five formants F1–F5 on the psychoacoustical Bark scale (which takes 
into account properties of human auditory perception) given by the vector of five 
numeric values (in Bark): (5.13, 9.5, 14.56, 16.08, 18.04)), the high front [i] (as 
in ‘beet’, (2.29, 14.05, 15.63, 16.52, 17.88)), the low front [æ] (‘bat’, (6.69, 12.02, 
14.69, 16.32, 18.9)), the high back rounded [u] (‘boot’, (2.72, 5.07, 15.14, 15.79, 
16.96)), and the low back [ɑ] (‘hot’, (6.59, 8.34, 15.11, 15.91, 18.03)), which are very 
frequent cross-linguistically4 and better cover the phonetic space than the usual [i], 
[a] and [u] (Fig. 2).

For a given MSHPS c, we first trained a single naive agent to produce 
reproductions of the five seed vowels v ∈ {[ə], [i], [æ], [u], [ɑ]} as well as possible. 
We denote this process as:

ə α → ə αc : {[ ], [i], [æ], [u], [ ]} {v , v , v , v , v }[ ]
1

[i]
1

[æ]
1

[u]
1

[ ]
1

where v1
[ə] is the actually produced sound for ‘seed’ vowel [ə], and so on. We 

further implemented an iterated learning Model (ILM)30 whereby the vowels 
produced by the first generation of agents, {v1

[ə], v1
[i], v1

[æ], v1
[u], v1

[ɑ]}, are used as 
targets for training a second generation of naive agents, whose productions are 
used to train a third generation, and so on until a predetermined final generation 
n > 1. These chains are homogeneous as the MSHPS of the agents, c, is conserved 
across generations:

ə α → →

→ … →
ə α

ə α ə α

c : {[ ], [i], [æ], [u], [ ]} {v , v , v , v , v }

{v , v , v , v , v } {v , v , v , v , v }
[ ]
1

[i]
1

[æ]
1

[u]
1

[ ]
1

[ ]
2

[i]
2

[æ]
2

[u]
2

[ ]
2

[ ]
n

[i]
n

[æ]
n

[u]
n

[ ]
n

We quantify the effects of MSHPS c and number of generations 1 ≤ k ≤ n by 
comparing the seed vowels {[ə], [i], [æ], [u], [ɑ]} to the corresponding productions 
in that generation {vk

[ə], vk
[i], vk

[æ], vk
[u], vk

[ɑ]}.
For any such chain, we extracted the trajectory of each of the formants for each 

of the vowels across generations (that is, the time series formed by the values Fv(i)
k 

of the formant 1 ≤ i ≤ 5 for vowel v in generation 1 ≤ k ≤ n), and we computed the 
dynamic time warping distance between all corresponding pairs of trajectories (a 
lower distance captures similar trajectories). For a given vowel ‘v’, we computed 
the Euclidean distance (in the F1 × F2 × F3 × F4 × F5 space) between its realization 
in generation 1 ≤ k≤ n, vk, and the seed vowel v0, and between vk and its realization 
in the previous generation, vk−1 (for k ≥ 2). For the vowel system as a whole (that 
is, the set of all five vowels) in generation k, we computed the ordinary Procrustes 
distances to the seed vowels and to the previous generation (for k ≥ 2). Separately, 
we generated 100,000 random five-vowel systems in the F1 × F2 × F3 × F4 × F5 space 
that respect the observed range of formant values, and we obtained a distribution 
of ordinary Procrustes distances between 0.24 and 4.51 (mean 2.18).

Because the learning procedure is computationally expensive, we ran a single 
replication (with 50 generations) for each of the 107 actual human MSHPSs, 
supplemented by 70 independent replications (each with 50 generations) for 
five MSHPSs selected for being extremes (low and high), representative for the 
observed human variation (A87 and A73) and the average of the observed  
human variation.

Within- and between-group variation in VT anatomy. We used three types of 
data: two derived from high-resolution 3D intra-oral scans (IOS) of 94 ArtiVarK 
participants (37 female, age range 18–61, mean 27.6, median 25, SD 8.1; note 
that not all participants with IOS also provided MRI scans due to, for example, 
orthodontic metallic implements), namely (1) the raw 3D coordinates of the IOS 
scans, and (2) a set of 57 ‘classical’ anthropological measures derived from these 
IOS scans (angles, distances, ratios and regression coefficients; see Supplementary 
Results 1 section 3.1), as well as (3) the Bézier curve parameters19 derived 
from the MRI scans of the 85 ArtiVarK participants and 22 North American 
participants from ref. 22 described above. The ArtiVarK study was designed with 
inter-individual and inter-group variation in mind, so that we aimed to recruit 
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about n = 100 participants in total, distributed as equally as possible between 
sexes and four broad ethno-linguistic groups (‘European’ and ‘North American 
of European descent’, ‘North Indian’, ‘South Indian’ and ‘Chinese’), resulting in a 
convenience sample recruited through multiple channels (personal contacts, direct 
mailing and social networks) in the Netherlands and areas of Germany close to 
Nijmegen. Given the exploratory nature of the study, we did not conduct a formal 
power analysis, with the final sample size resulting from a balance between costs 
and access to MRI and intra-oral optical scanning facilities, and is larger than 
those usually reported in the literature22–24. As ArtiVarK is aimed at uncovering 
the patterning and effects of inter-individual and inter-group variation, we kept 
the conditions as uniform as possible across participants (that is, we did not have 
multiple experimental conditions and we did not randomize the participants 
beyond fluctuations due to recruitment). The VT anatomy data used in this 
paper was derived through a standardized procedure blinded to the aims of 
this study, as was the analysis. To test the presence of information about group 
and sex in these VT anatomical data, we applied both (1) exploratory methods 
(PCA and MDS) and (2) methods with a priori information about group and 
sex (MANOVA, random forests, CVA and Procrustes analysis). We found that, 
while the exploratory techniques do not recover the participant’s group and sex 
from any data type, the methods with a priori information generally successfully 
recover significant differences between the groups using IOS data. The Bézier 
parameters have low dimensionality and cover only a specific aspect of VT 
anatomy, probably requiring a much larger sample than we currently have: a power 
analysis using G*Power 3.145 of the MANOVA test using the actual effect size with 
power 1−β = 80% and significance level α = 0.05, suggests a sample size of ≥27 
participants per group (compared to our 10 ‘Chinese’, 50 ‘Caucasian’, 15 ‘North 
Indian’ and 19 ‘South Indian’ participants), and close to 300 per sex (compared to 
our 37 female and 57 male participants).

Distribution of [ə], [i], [æ], [u] and [ɑ] across languages and dialects. Building 
on shared code (https://github.com/soskuthy/u-fronting), we extracted up to the 
4th formant for 1,051 actual realizations of the five vowels (72 for [ə], 438 [i], 
63 [æ], 410 [u] and 68 [ɑ]) across 202 unique languages and 309 dialects from 
a published dataset31 (see Fig. 2 and Supplementary Results 1 Part I), and we 
compared our simulated results to these data both in terms of spread for the same 
vowel and their central tendencies.

Computational details. For the results reported here, we used several high-end 
desktop computers (Intel Core i7-4790k 32 Gb RAM and Intel Core i7-3770 
16 Gb RAM) and dedicated server blades (dual Intel Xeon E5-2620 64 Gb RAM), 
resulting in a maximum of 36 parallel execution threads, each thread implementing 
the learning of a single vowel for a given MSHPS; with this setup, more than 
120,000 computer-days (more than 6 wall-clock months) were required.

Statistical analysis. All analyses are included and described in the reproducible 
Rmarkdown scripts, and all the results are contained in the HTML reports that 
result from the scripts’ compilation, (see Supplementary Results 1 and 2). If not 
otherwise specified, we report uncorrected P values and the percent of adjusted 
explained variance R2, and used two-tailed tests and an α-level of 0.05 for all 
statistical tests. We included all participants with the relevant data (MSHPS 
tracings derived from MRI scans, intra-oral scans and classical measurements, 
respectively; some ArtiVarK participants did not have MRI data due to issues such 
as orthodontic devices, but did have intra-oral scans, while none of the participants 
from ref. 22 have intra-oral scans or classical measurements). We conducted PCA 
across the four Bézier parameters (resulting in the ‘shape PCs’) and separately on 
the 11 free articulatory parameters (resulting in the ‘articulatory PCs’). For the 
final generation of the chains, we performed linear regressions of the formant 
values on the ‘shape PCs’ and their interactions, and of the articulatory parameters 
(and the ‘articulatory PCs’) on the ‘shape PCs’ while controlling for the formant 
values, separately for each vowel (as the vowels show different chain dynamics). 
We performed multidimensional scaling (MDS) and hierarchical agglomerative 
clustering on the pairwise Dynamic Time Warping (DTW) distances between 
trajectories, and we conducted linear quadratic regressions of the Euclidean and 
Procrustes distances on the chain generation (these are supported by Generalized 
Additive Models (GAMs) shown in the Supplementary Results 1 Sections 
2.2.5. “Generalized Additive Models (GAMs)” and 2.3.3. “The formants across 
generations”). Our data are relatively normally distributed (see Supplementary 
Results 1 Appendix V: Normality checks), with the notable exception of the  
Bézier parameters.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data, including the participant vocal tract anatomies, the MSHPS parameters 
and seed vowels (except for the 3D intra-oral scans, which are not provided  
because they may endanger our participants’ privacy), are available in the 
Supplementary Information and in the GitHub repository https://github.com/
ddediu/hard-palate-vowels.

Code availability
All the computer code of the simulations, the Rmarkdown scripts implementing 
the statistical analyses and plots, and a detailed ‘How-To’, are freely available in 
the Supplementary Information (Supplementary Software) and in the GitHub 
repository https://github.com/ddediu/hard-palate-vowels. The only exception is 
the modified source code of VTL2, available upon request under a custom license 
modelled on the original VocalTractLab 2.1 license; for this, only the pre-compiled 
version is freely distributable. The simulation software is written in C++, Java 
and Python2 and runs under Microsoft Windows 7 (or later), while the statistical 
analyses are implemented in R (embedded in Rmarkdown) and should run on any 
platform supported by these (Windows, macOS and various versions of Linux  
and BSD).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection A Python 2 script was used to fit the Bézier parameters to the manually traced MRI midsagittal hard palate shape. The simulation consists 
of a software chain comprising sections written in C++, Java and Python2. All these are available in the supplementary materials, the 
associated GitHub repository, and in already published materials, all clearly referred in the paper and the supplementary information. 

Data analysis The Rmarkdown scripts are fully available in the SI and in the GitHub repository. The analysis was run mainly on an Ubuntu 18.04 
machine with R 3.4.4 and R 3.5.0, and was checked and replicated on separate machines running macOS High Sierra, macOS Mojave, 
Ubuntu 16.04, and Windows 10 Professional with R 3.4.4 and R 3.5.0 using different BLAS/LAPACK implementations (standard R, Apple 
Accelerate Framework and OpenBLAS).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All primary data are freely and fully available with the paper (in the SI and the GitHub repository) or are already fully and freely available as part of prior publications 
(as mentioned in the paper and the SI), with the exception of the 3D intra-oral scanning data which could potentially contain personal and/or identifiable 
information about our participants (for these, only the analysis script and its results are made public).
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative experimental primary data derived from MRI and intra-oral scans of the vocal tract, and computer simulations.

Research sample We used two samples. One comes a from published source [Tiede, M. K., Boyce, S. E., Holland, C. K. & Choe, K. A. A new taxonomy of 
American English /r/ using MRI and ultrasound. J. Acoust. Soc. Am. 115, 2633–2634 (2004)] containing data from 22 adult North 
American participants (10 female; age range 18-51, mean 29.8, median 27.5, sd 9.2).  
The other sample comes from our own ArtiVarK project and contains 85 adult participants (32 female; age range 18-61, mean 27.2, 
median 24, sd 7.6) recruited from four broad ethno-linguistic groups (Europe and North American of European Descent [speakeing Indo-
European languages, mostly Germanic]; North India [speakers of Indo-Aryan languages]; South India [speakers of Dravidian languages]; 
and "Chinese" [speaekrs of Sino-Tibetan languages]).  
These data should be representative of the normal variation among adults in vocal tract anatomy.

Sampling strategy Our own sample (ArtiVarK) was designed to cover language backgrounds of general interest, with targeted recruiting of participants from  
these backgrounds. We used multiple methods for recruiting participants (Facebook groups, direct e-mailing, announcements) from the 
Netherlands and areas of Germany close to Nijmegen. Given the exploratory nature of this study, we did not conduct a formal power 
analysis, with the final sample size resulting from a balance between costs and access to MRI and intra-oral optical scanning facilities, but 
it is larger than those usually reported in the literature. The full details about this sample are described in the paper and in cited 
published materials.

Data collection For this study, we used only the static MRI and intra-oral scans of the participants (full details about the procedure are given in the article 
itself and the cited publications). The scanning procedure was standardized, and while the researcher was not blinded to the overall goals 
of the data collection (the effect of normal variation in vocal tract anatomy on speech production and cross-linguistic diversity), at the 
time the data was collected we did not yet fully design this particular study reported here (thus, there was implicit blinding in what 
concerns the influence of midsagittal hard palate shape on vowel transmission across chains of simulated agents, as reported here).

Timing Our data was collected between April and September 2015. The published data comes from a paper published in 2004.

Data exclusions We used all the participants with the appropriate data (MRI or intra-oral scans) -- please note that some could not provide MRI data due 
to various issues such as orthodontic metallic implements (the entire ArtiVarK database, including the test and calibration runs, contains 
a total of 94 participants, of which 85 could be used in this study).

Non-participation The general non-participation rate is hard to estimate given the types of recruitment used, but among those that contacted us with an 
interest in participating, it was very low and related to conflicting scheduling or to situations (such as metallic orthodontic implements) 
that prevented safe MRI scanning.

Randomization Given the focus of the study, namely inter-individual variation, we kept everything as constant as possible across participants. Thus, the 
tasks were identical, in the same order, and in the same conditions across all participants.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment Adverts on campus and online, e-mailing campaigns, direct requests, and contacting facebook groups. Self-selection based on 
interest in language (and, more generally, science) is a possibility, but given that we were interested in inter-individual normal 
variation in vocal tract anatomy this is probably not a major issue.

Ethics oversight The ArtiVarK study is covered by amendment 45659.091.14 (1 June 2015) "ArtiVarK: articulatory variation in speech and 
language" to the ethics approval "Imaging Human Cognition", Donders Center for Brain, Cognition and Behaviour, Nijmegen, 
approved by CMO Regio Arnhem-Nijmegen, The Netherlands (please see doi:/10.5281/zenodo.1480426 for details). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Static structural MRI scan of the vocal tract

Design specifications Single structural scan obtained per subject with 10 minute acquisition time.

Behavioral performance measures For the structural MRI scan, no behavioral measures were used.

Acquisition

Imaging type(s) Structural

Field strength 1.5T

Sequence & imaging parameters T1 MPR NS PH8, TE=2.58ms, TR=2250ms, flip angle 15°, slice thickness 1mm, pixel spacing 1mm×1mm, FOV 256×256

Area of acquisition The vocal tract

Diffusion MRI Used Not used

Preprocessing

Preprocessing software MRI processed using MATLAB (Versions 2018b). Midsagittal hard palate traces obtained using a custom graphical user 
interface in Matlab of our own creation.

Normalization Not applicable.

Normalization template Not applicable.

Noise and artifact removal Not applicable.

Volume censoring Not applicable.

Statistical modeling & inference

Model type and settings None relevant here

Effect(s) tested None relevant here

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

None relevant here

Correction None relevant here
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Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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